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ABSTRACT
Automatic music transcription is a process recovering
the most likely combination of sounds that produced the
recorded audio signal. We are concerned with memory-based
approach, where the observed signal is modeled as a super-
position of sounds from a library. Moreover, we assume that
only parts of the sounds can be played. The number of pos-
sible combinations is excessive and exact estimation is com-
putationally prohibitive. We propose to transform the orig-
inal discrete-event model into a less restricted parametriza-
tion and impose the constraints in a soft way via prior in-
formation. The resulting model is a non-linear state-space
model with Gaussian disturbances. The posterior estimates
are evaluated by the extended Kalman filter. Performance
of the model is studied in simulation and it is shown that it
outperforms previously published methods.

1. INTRODUCTION

Automatic music transcription (AMT) is a process of decom-
posing recorded music signal into a sequence of higher-level
sound events. The entire AMT—i.e. resolving pitch, loud-
ness, timing and instrument of all sound events in an input
audio music signal [6]—is not theoretically possible in gen-
eral [6], therefore practical AMT has to be restricted to a
specific scenario. Commonly used scenarios are memory-
based and data-based AMT. The former utilizes sound mod-
els corresponding to a certain musical instrument sound (al-
lowing to identify the instruments), the latter utilizes only
rules which hold in general. We are concerned with a special
case of memory-based AMT. Kashino’s transcription system
[9] is another system that is considered as an entire memory-
based AMT system in the sense of [6].

Intuitively, the problem can be understood as an ‘inverse
music sequencer’, Fig. 1. Music sequencers have a pre-
recorded library of sounds (sound components) which are
combined together to create music signal. Input to the se-
quencer is a MIDI file which contains information about be-
ginning of music events in time, their duration, IDs of sounds
(in our case the pre-recorded sound components), their am-
plitude and modification type. Component modification(s)—
e.g. component truncation or pitch shifting—were designed
to reduce the size of the pre-recorded library. In this paper
we consider only component truncation as a possible modi-
fication. Output of the sequencer is the audio signal. Input
of our ‘inverse music sequencer’ is the recorded music signal
and its output is the estimated (transcribed) MIDI-like repre-
sentation of music events.

The sequencer composes the output from sounds stored
in the library of K sounds. Each sound is composed of Lk
frames, which are supposed to be played after each other.

Figure 1: Principle of a music sequencer. The range of active
frames pκ is yellowed. Note that the amplitudes are the same
for all events in a track k (represented by squares of the same
color).

The input events are defined by: (i) index of the sound to
play, k = [1, . . . ,K], (ii) truncation of the sound, i.e. begin-
ning of the range of frames from the kth sound to play, ppp, and
(iii) amplitude of the sound, 0≤ g≤ 1. We assume that each
sound can be played only once at time t. The output sound is
then:

yyyt = ∑
κ∈Kt

gκ f (kκ , pppκ , t), (1)

where yyyt is the φ -dimensional vector of measurements at
time t composed of either time- or frequency-representation
of the input music signal segment (frame); κ denotes ID
of the event from the set of events active at time t, Kt ⊂
[1, . . . ,K]. Function f (kκ , pppκ , t) looks up the frame from
range pppκ of the kκ th sound that is active in time t, see il-
lustration on Fig. 1.

Model (1) is a suitable representation of a sequencer,
however, it is not suitable for the inverse operation since the
number of possible configurations of the unknowns Kt and
pppκ is enormous. Formally, (1) can be written as a sum over
all frames

yyyt =
N

∑
i=1

αi,tgi,t fff i, (2)

where N = ∑
K
k=1 Lk, αi,t ∈ {0,1} is equal to 1 if ith frame,

fff i, is used in (3) and gi,t is the corresponding amplitude. The
values of αi,t are constrained by the parameters Kt and pppκ as
follows:



• only one frame of the kth sound may be active at time t,
• when the ith frame of the kth sound was active in time

t−1 and t is in pppκ , the (i +1)th frame must be active in
time t,

• no frame is active when t is out of pppκ .
The number of possible combinations of αi,t is still enor-
mous, since we allow arbitrary truncations of the sounds.
Therefore, we propose to relax the hard constraints above
and introduce an unconstrained variable 0≤ ai,t such that

yyyt =
N

∑
i=1

ai,t fff i = FFFaaat . (3)

where FFF = [ fff 1, . . . , fff N ] and aaat = [a1,t , . . . ,aN,t ]′, ai,t being the
amplitude of ith frame. This relaxation has both advantages
and disadvantages.

The advantage is that model (3) is well studied in sta-
tistical literature and efficient parameter estimation methods
exists for its various variants. For example, linear regression,
factor analysis [3], Kalman filtering, matching pursuit [10]
and independent component analysis [5] (ICA) arise from (3)
by imposing different assumptions on parameters aaat and FFF .
These methods are used in music processing, e.g. ICA for
blind (unsupervised) source separation (BSS) techniques in
monoaural input music signals [6]. In this work, we investi-
gate the use of the Kalman filtering approach.

The main disadvantage of the relaxation is that it allows
to explain signal yyyt by a combination of frames that are not
valid from musical point of view (e.g. it allows to play all
frames from one sound at the same time). The original re-
strictions can be restored in less restrictive form via transi-
tion model p(aaat |aaat−1) which needs to be designed. Similar
approach was used in [2] where the prior was designed for
the whole sequence by optimized combination of priors com-
monly used in the area. In this paper, we present a new model
using only first-order Markov transition model which is ob-
tained by conversion of transition model for discrete events
(1) into a form suitable for the continuous model (3).

The paper is organized as follows: model of the sig-
nal transition between time frames is presented in the sec-
ond Section; evaluation of the posterior density implied by
the model is presented in the third Section; simulation study
that assess performance on the model on music data is in the
fourth section.

2. DERIVATION OF THE MODEL

Observation of the signal yyyt are never perfect due to round-
off errors and measurement noise. The observation model
(3) is used as mean value of Gaussian likelihood function of
observations:

p(yyyt |aaat ,FFF) = N (FFFaaat ,ω
−1IIIφ ). (4)

Here, N denotes normal distribution of vector argument, ω

is scalar precision parameter, IIIφ denotes identity matrix of
dimensions φ ×φ .

The task is to estimate posterior density of aaat given
available data, p(aaat |FFF ,YYY t), where YYY t = [yyy1, . . . ,yyyt ]. The
constraints on α will be transformed into Gaussian prior
p(aaat |aaat−1), which is parametrized by mean value of size N
and covariance matrix of size N×N.

2.1 Transformation between αi,t and ai,t

We start with a simple transformation between discrete vari-
able ααα t and continuous amplitude aaat , specifically

p(ai,t |αi,t) =
{

N (1,kσ1) ifαi,t = 1,

N (0,σ1) otherwise.
(5)

Intuitively, zero values of αi,t (i.e., representation of silence)
are mapped on ai,t which are ‘close to zero’ and αi,t = 1 (i.e.,
the loudest sound notation) are mapped to ai,t close to 1. The
closeness is modeled by variance parameter σ1. Since we
allow lower amplitudes of the tone via g, we model variance
of the first component of the pdf in (5) to be k times greater
than that of the second component.

Inverse mapping of aaat to ααα t can be obtained by the Bayes
rule:

p(αi,t |ai,t) = p(ai,t |αi,t)p(αi,t)/p(ai,t).
There is no information on prior of αi,t , thus p(αi,t) is uni-
form, and for a particular component:

p(αi,t = 0|ai,t) ∝

1
2 σ
−0.5
1 exp(− 1

2σ1
a2

i,t)

1
2 σ
−0.5
1

[
exp(− 1

2σ1
a2

i,t)+ k−0.5 exp(− 1
2kσ1

(1−ai,t)2)
]

=
1

1+ k−0.5 exp(− 1
2kσ1

((1− k)a2
i,t −2ai,t +1))

(6)

2.2 Parameter evolution model
In the discrete parametrization (1), the transition between
frames can be modeled by a simple Markov transition:

p(αi,t |αi−1,t−1) αi−1,t−1 = 0 αi−1,t−1 = 1
αi,1 = 0 τ0 1− τ0
αi,1 = 1 1− τ1 τ1

where τ0,τ1 are constant probabilities that the discrete am-
plitude is not changed by the transition from t−1 to t . This
transition model can be combined with (6) as follows:

p(ai,t |ai−1,t−1) = ∑
αi,t−1

∑
αi−1,t−1

p(ai,t |αi,t)p(αi,t |αi−1,t−1)p(αi−1,t−1|ai−1,t−1) (7)

However, direct application of this rule would result in prior
p(aaat) being a mixture of 4NT components which is not com-
putationally tractable. Hence, we project (7) into a single
Gaussian density

p(ai,t |ai−1,t−1) = N (µi,t−1,σi,t−1) (8)

using geometric merging of probabilities [7], which yields

σ
−1
i,t−1 = α̂i,t

(k−1)τ0 +1
kσ1

+(1− α̂i,t)
(k−1)(1− τ1)+1

kσ1
,

=
α̂i,t(k−1)(τ0 + τ1−1)+(k−1)(1− τ1)+1

kσ1
(9)

µi,t−1 = σi,t−1

(
α̂i,t

(1− τ0)
kσ1

+(1− α̂i,t)
τ1

kσ1

)
.

=
α̂i,t(1− τ0 + τ1)+1

α̂i,t(k−1)(τ0 + τ1−1)+(k−1)(1− τ1)+1
(10)



Figure 2: Visualization of matrix notation of the audio model.

where α̂i,t = p(αi,t = 0|ai,t) from (6).
Prior (7) is valid only when frame with index i− 1 is in

the same sound. First frames in the sound are treated in a
special way. The probability of the whole vector is then:

p(aaat |aaat−1) = N (h(aaat−1),QQQt(aaat−1)), (11)

p(yyyt |aaat) = N (FFFaaat ,ω
−1IIIφ ). (12)

Here, h(aaat−1) is a vector valued function,

hi(aaat−1) =
{

µi,t(aaat−1) if i, i−1in thesamesound
c otherwise

, (13)

and QQQt is a diagonal matrix

Qi,i,t(aaat−1) =
{

σi,t(aaat−1) if i, i−1in thesamesound
q otherwise

.

(14)
Here c,q denote constants on the positions of first frames of
the library sounds, for illustration of the relation between i
and sounds see Fig. 1.

3. BAYESIAN FILTERING OF THE MODEL

The state-space model derived in Section 2 is strongly non-
linear model with Gaussian disturbances. There is a range
of techniques for Bayesian filtering, such as particle filters
[4], extended Kalman filters, and others. The model was de-
rived using projection into Gaussian densities, hence a filter
designed for Gaussian disturbances seems to be appropriate
choice. For the purpose of this paper, we will use a version
of the extended Kalman filter (EKF).

The task is to recursively compute posterior density
p(aaat |YYY t) which is, in the EKF, approximated by a Gaussian

p(aaat |YYY t) = N (h(âaat−1)−KKK(yyyt −FFFâaat−1),PPPt,t),

where âaat−1 is a mean value of the previous density
p(aaat−1|YYY t−1) and matrices KKK and PPPt,t are computed using

the standard EKF as follows:

RRRy = FFF ′PPPt−1FFF +ω
−1IIIφ ,

KKK = PPPt−1FFFRRR−1
y (15)

PPPt|t = PPPt−1−PPPt−1FFF ′RRR−1
y FFFPPPt−1,

PPPt = AAAPPPt|tAAA+QQQt(âaat−1).

Here, AAA = d
daaat−1

h(aaat−1) which is a sparse matrix composed
of derivatives of µi,t (10)

d
dai,t−1

µi,t−1 =
(−1+ t0 + t1)

√
k ((k−1)ai,t−1 +1)εσ1

−1(
k3/2t0 +

√
k−
√

kt0 + ε(k− kt1 + t1)
)2

ε = exp
1
2

(k−1)a2
i,t−1 +2ai,t−1−1

kσ1

Note that Qt(aaat−1) in (11) was replaced by Qt(âaat−1) in
(15). This change is required since EKF does not allow co-
variance matrices to be function of the state variable. We
conjecture that this is an acceptable approximation.

4. EXPERIMENT

The simulated data were generated from piano midi files.
Each note was represented by pitch, onset time, duration and
offset in the sound library. The offset is a non-standard ex-
tension of the midi format. The corresponding amplitude
matrix and the observed audio signal were generated using
model (1). Midi notes that were not available in the library of
sounds were omitted. For testing purposes, 61 library sounds
(corresponding to midi notes 36—96) were used, each of
them having 10 frames. Each frame contained 4096 sam-
ples at 44.1 kHz sample rate, represented by the magnitude
spectrum. For training of the nuisance parameters, only 36
(midi notes 45—80) sounds were considered. Thus, there
were 610 and 360 frames in the testing and training library,
respectively. The sounds assigned to the piano midi events
were obtained by a harmonic tone synthesizer [1] which pro-
duce tones with sharp attack and inner frames of different
loudness, however, the frames were significantly similar to
each other. Hence, the audio signal generated by the first



frame at low amplitude is remarkably similar e.g. to that of
the third frame at higher amplitude. This is a challenge for
estimation, since the likelihood model alone can not prop-
erly distinguish those two cases and good model of the prior
is required to obtain good performance.

The proposed model contains nuisance parameters δ1 =
[σ1,k,τ0,τ1,c,q] in the apriori part and ω1 in the likelihood.
These were optimized by Matlab function fminsearch us-
ing the following criteria: (i) a measure similar to the total
relative sound-to-distortion ratio [8] that read:

SDR = 10log10
∑t [b ·FFFacoustaaat ]2

∑t [yyyt −b ·FFFacoustaaat ]2
, (16)

where b is a scalar fitting b ·AAA = AAAre f erence + noise accord-
ing to MMSE, and Facoust is the matrix of frames in acoustic
form; and (ii) a hit-measure: m = hits−0.5 ·( f alsepositive+
f alsenegative). Model nuisance parameters were trained on
51 frame long signal of one of Debussy’s preludes and tested
on 582 frame long concatenation of short excerpts of Mozart
and Debussy. In the training phase, 51 units were filtered
by the Kalman filter to a selected optimization criteria value,
frame by frame with no overlap. The SDR criteria was found
to be more suitable for optimization since the hit-measure is
too coarse for the fminsearch optimization. Moreover,
the hit-measure depends on the amplitude threshold to dis-
tinguish active from non-active ai,t amplitudes whereas the
SDR does not. All results presented in the paper are based
on nuisance parameters optimized for the SDR criterion. In
the testing phase, 58 seconds of music audio signal contain-
ing 1325 active frames were estimated by the Kalman filter.

For comparison, two previously published methods have
been applied to the same data. The first approach, la-
beled ‘maxent’, is based on model (3) with different prior
[2]. The prior is obtained by optimized combination of
four phenomena: A) sparsity; B), C) temporal dependence;
D) dissimilarity of simultaneous sounds. Combination of
these phenomena was governed by nuisance parameters δ2 =
[λ ,γ,c,ν1,ν2] and ω2, which were optimized using the same
fminsearch procedure. The original δ2 from [2] con-
tained additional parameter ζ , which was found to be re-
dundant. The second compared method, labeled ‘NMF’, is
non-negative matrix factorization of the measurement matrix
YYY [6], where the matrix of bases corresponds to F that is
known. Even though there are ‘NMFs’ with various restric-
tions on amplitude matrix, the considered ‘NMF’ transcrip-
tion uses no prior knowledge (i.e., no restrictions) to demon-
strate the informativeness of the independent measurements.

Resulting transcriptions of all three tested methods are
displayed via piano-roll schematics in Figures 3 (detail of
note E 64) and 4 (initial 25 samples of the testing set). Note
that the above mentioned ambiguity of the likelihood is well
manifested in the results of NMF approach (Fig. 4, bottom-
right) which is based only on the likelihood. Models of prior
information (maxent or the current model) improve the es-
timation results by sharpening around the most likely path.
However, the ambiguity is affecting these methods as well,
since one missed frame may lead to a postponement of the
whole tone, see detail of the posterior in Fig. 3. This shift in
time has negative influence on the hits factor of the current
method as summarized in Table 1. The maxent model was
poor in estimation of the length of a sounding note. Almost
all lengths were estimated identically despite their variablity.

0 5 10 0 5 10 0 5 10

Figure 3: Focus of the note E 64 from Fig.4: posterior density
of matrix A from NMF (left), using maxent model (middle),
and the current model (right). The simulated value was a
straight line with one vertical step increase in each horizontal
step.

Table 1: Comparison of the presented model with previous
methods.

active
frames
total

hits false
positive

false
nega-
tive

SDR
[dB]

current
model 1325 1219 293 106 10.59

maxent
model 1325 1038 257 557 8.72

NMF 1325 1007 1367 218 3.53

This led either to their over-estimation or under-estimation
according to the tested data. Over-estimation of the lengths
causes only minor decrease of the SDR values since ampli-
tudes of the tones at their ends are small.

Using library of those 61 sounds, one time unit process-
ing ranged from 1.5 to 2 with Kalman filter on Core Duo or
Quad Core CPU. Hundred of iterations of the ‘NMF’ algo-
rithm took about 30 seconds, thus the implementation of the
problem solution by the ‘NMF’ was about 50 times faster
than the problem solution by Kalman filter.

5. DISCUSSION AND CONCLUSION

We have presented a new model with continuous
parametrization for automatic music transcription. The
main motivation of the new prior is on-line transcription of
the signal using only first-order Markov transition model.
The underlying model of discrete events was transformed
into continuous version via Gaussian mixture models.
Projection of these mixtures into a single Gaussian density
yields non-linear state-space model with Gaussian distur-
bances. Music transcription is then converted into estimation
of the state variable which is achieved by the extended
Kalman filter with a minor modification. The nuisance
parameters were tuned on a small training set, while the final
comparison was performed on a significantly larger data-set.
The results compare favorably to the previously published
approaches. Note that the transcription is obtained on-line,
i.e. each point was estimated using only data available up to
the time of the analysis. It can be expected that extensions
using Bayesian smoothing would further improve on the
quality of the estimates. At present, the Kalman gain calcu-
lation is rather expensive—one step takes about one second
in this case—but there is a lot of space for optimization
or approximate evaluation employing e.g. the ensemble
Kalman filter. Further improvement can be obtained by
extension of the prior to higher-order Markov model. In
this paper, we have considered only transition between the
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Figure 4: Example of simulated and transcribed piece of polyphonic music. Top-left: original music excerpt; top-right:
the excerpt transcribed by the current model with optimized nuisance δ1 = [4,3 · 10−4,59,0.88,0.93,0.26,0.17], ω1 = 0.69;
bottom-left: the maxent model, optimized nuisance δ2 = [0.005,1.0,4 ·10−6,0.26,10−4], ω2 = 1.0; bottom-right: transcrip-
tion by NMF without any constraints. Vertical axis denotes tone with the due midi keys. The horizontal axis denotes discrete
time (time units). Focused depiction of one note is displayed in Fig. 3.

two consecutive frames in the bank of sounds. Clearly, the
approach can be extended for 3 and more frames.
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